Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density
نویسندگان
چکیده
Ischaemic stroke is responsible for up to 80% of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 μm and densities of 800, 1,030 and 1,300 kg/m(3) were released in the vessel's central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 μm) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle cerebral artery and anterior communicating artery can have large impact on such distributions.
منابع مشابه
Embolus trajectory through a physical replica of the major cerebral arteries.
BACKGROUND AND PURPOSE The observed distribution of cerebral infarcts varies markedly from expectations based on blood-flow volume or Doppler embolus detection. In this study, we used an in vitro model of the cerebral arteries to test whether embolus microspheres encountering the circle of Willis are carried proportionally to volume flow or express a preferred trajectory related to arterial mor...
متن کاملAccidental microembolic signals: prevalence and clinical relevance
Background: The purpose of this study was to examine the occurrence of accidental microembolic signals (MES) and its clinical relevance in patients receiving routine transcranial Doppler (TCD) examinations. Methods: We retrospectively reviewed our institutional TCD database (from January 2007–November 2012). The arteries with positive MES, the presumed sources of emboli and the clinical backgro...
متن کاملPreoperative 3D FSE T1-Weighted MR Plaque Imaging for Severely Stenotic Cervical ICA: Accuracy of Predicting Emboli during Carotid Endarterectomy
The aim of the present study was to determine whether preoperative three-dimensional (3D) fast spin-echo (FSE) T1-weighted magnetic resonance (MR) plaque imaging for severely stenotic cervical carotid arteries could accurately predict the development of artery-to-artery emboli during exposure of the carotid arteries in carotid endarterectomy (CEA). Seventy-five patients underwent preoperative M...
متن کاملCerebral Hyperperfusion after Revascularization Inhibits Development of Cerebral Ischemic Lesions Due to Artery-to-Artery Emboli during Carotid Exposure in Endarterectomy for Patients with Preoperative Cerebral Hemodynamic Insufficiency: Revisiting the “Impaired Clearance of Emboli” Concept
The purpose of the present study was to determine whether cerebral hyperperfusion after revascularization inhibits development of cerebral ischemic lesions due to artery-to-artery emboli during exposure of the carotid arteries in carotid endarterectomy (CEA). In patients undergoing CEA for internal carotid artery stenosis (≥70%), cerebral blood flow (CBF) was measured using single-photon emissi...
متن کاملCerebral microemboli and brain injury during carotid artery endarterectomy and stenting.
BACKGROUND AND PURPOSE Cerebral microembolic signals detected by transcranial Doppler are frequent during carotid angioplasty with stenting and carotid endarterectomy (CEA). Their potential harmful effects on the brain are, however, unclear. The aim of this study was to relate the frequency and type of per-procedural microembolic signals to procedure-related ipsilateral ischemic strokes and new...
متن کامل